

The asteralean affinity of the Mauritian *Roussea* (Rousseaceae)

JOHANNES LUNDBERG

Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden

Received April 2000; accepted for publication June 2001

Recently, it has been shown that Roussea is placed correctly in the mainly Australasian Asterales, but the sister group to Roussea has not been unequivocally identified. Cladistic analysis of the chloroplast genes ndhF and rbcL identifies the sister group to Roussea as Carpodetaceae. Recognizing this relationship, the monotypic Rousseaceae is merged with Carpodetaceae into Rousseaceae s.l. comprising two subfamilies. This group is characterized by many-locular ovaries and similarities in the appearance of the petals. Rousseaceae s.l. exhibit a disjunct distribution in Mauritius, East Australia, New Zealand and New Guinea.

ADDITIONAL KEY WORDS: Australia – Carpodetaceae – classification – ndhF – rbcL – New Guinea – New Zealand.

INTRODUCTION

In 1789 Sir James Edward Smith described a new genus from Mauritius. He named it Roussea Sm. in memory of Jean-Jacques Rousseau, who had died eleven years earlier. Roussea, as a single species R. simplex Sm., is a climbing shrub endemic to the mountain forests of Mauritius (Takhtajan, 1987; Scott, 1997), where it once was locally abundant, but is now becoming increasingly rare (Scott, 1997). Originally the genus was included in Campanulaceae but, in his monograph of the family, Alphonse de Candolle (1830) excluded Roussea. He suggested a relationship with Escalloniaceae (and particularly Forgesia Comm. ex Juss.), although he also considered Loganiaceae and Goodeniaceae as possible alternatives. In 1839 Augustin Pyramus de Candolle erected a new monotypic family, Rousseaceae ('Roussæaceæ'), for Roussea. Somewhat later (Lindley, 1853), Roussea was included in Brexiaceae together with Brexia Noronha ex Thouars, Ixerba A. Cunn., and Argophyllum J. R. Forst. & G. Forst. Since then, Roussea has usually been considered closely related to Brexia and Ixerba, although the rank of this group has varied, as an order (Takhtajan, 1997), a family (Takhtajan, 1966; Thorne,

1992), a subfamily (in Saxifragaceae: Engler, 1928; Schulze-Menz, 1964), a tribe (in Saxifragaceae: Eichler, 1878; in subfamily Escallonioideae in Saxifragaceae: Baillon, 1872) or without formal recognition (in Grossulariaceae: Cronquist, 1981; in tribe Escallonieae in Saxifragaceae: Bentham & Hooker, 1862–1867; in Escalloniaceae: Hutchinson, 1967). Other authors have followed de Candolle (1839) and placed *Roussea* in a monotypic family, sometimes considering it rather distantly related to Brexiaceae (e.g. Takthajan, 1987, with Rousseaceae in Saxifragales and Brexiaceae in Celastrales).

Thouvien (1890) pointed out that, mainly on anatomy, *Roussea* was anomalous within the *Brexia*-alliance. More recently, Hideaux & Ferguson (1976) concluded on palynological grounds that *Roussea* does not have any direct affinities either with *Brexia* or with *Ixerba*. Ramamonjiarisoa (1980) came to the same conclusion in her thorough investigation of African saxifragaceous plants, based on data from anatomy and chemistry (as *Ixerba* is a New Zealand plant, it was only superficially treated in her thesis). Acknowledging these differences, Takhtajan (1997) placed *Roussea*, *Brexia* and *Ixerba* in three monogeneric families but in an order of their own, Brexiales, which he considered to be close to Celastrales. The celastralean affinity of the group is mainly due to *Brexia*, which by

E-mail: Johannes.Lundberg@ebc.uu.se

Table 1. Previous published molecular studies with *Roussea* included. The analysed genes, number of genera sampled from Asterales (including *Roussea*), the support values obtained for a monophyletic Asterales, the sister group to *Roussea* identified in each analysis, and the support values for this sister group relationship are listed. BrS: Bremer Support, BS: Bootstrap values, JK: Jackknife values. Support values considered as high are in bold face.

Author	Genes	Sampling from Asterales	Support for Asterales	Sister group of Roussea	Support for sister group relationship
Soltis & Soltis (1997)	18S rRNA	5 genera	No support	Campanulaceae	1 (BrS)
Soltis <i>et al.</i> (1997)	18S rRNA	5 genera	No support	Campanulaceae	No support
Savolainen,	The $atpB$ – $rbcL$	3 genera	<50 (BS)	Asteraceae/	<50 (BS)
Spichiger &	spacer		86 (JK)	Phelline	<63 (JK)
Manen (1997)					
Koontz & Soltis (1999)	<i>rbcL</i> , 18S rRNA	8 genera	No support	Rest of Asterales	No support
Savolainen <i>et al.</i> (2000a)	atpB, rbcL	7 genera	71 (BS)	Campanulaceae	54 (BS)
Savolainen <i>et al.</i> (2000b)	rbcL	20 genera	No support	Carpodetaceae $s.l.$	80 (BS)
Soltis <i>et al.</i> (2000)	18S rRNA, rbcL, atpB	18 genera	94 (JK)	Campanulaceae	58 (JK)

many researchers has been found to show affinities with Celastraceae (Lindley, 1830, 1853; Verdcourt, 1968; Hegnauer, 1973; Bensel & Palser, 1975; Ramamonjiarisoa, 1980; Takhtajan, 1987; Tobe & Raven, 1993). This close relationship between Brexia and Celastraceae (Eurosids I sensu APG, 1998) has been confirmed by phylogenetic analyses of data sets consisting of rbcL (Soltis et al., 1990; Morgan & Soltis, 1993; Chase et al., 1993; Soltis & Soltis, 1997; Savolainen et al., 2000b), 18S rDNA (Soltis & Soltis, 1997; Soltis et al., 1997), or morphological data (Simmons & Hedin, 1999), as well as combined analyses with rbcL and 18S rDNA (Koontz & Soltis, 1999), rbcL and atpB (Savolainen et al., 2000a), and rbcL, 18S rDNA and atpB (Soltis et al., 2000). Ixerba has not yet been placed with any confidence, but seems to be included among the Eurosids (sensu APG, 1998), as indicated by Koontz & Soltis (1999), Savolainen et al. (2000b), and Soltis et al. (2000).

18S rDNA data (Soltis & Soltis, 1997) placed Roussea in the Asterales clade (represented by only four other genera), with Brexia still close to Celastraceae. The inclusion of Roussea in Asterales was also confirmed by Savolainen, Spichiger & Manen (1997) using the atpB-rbcL spacer, by Soltis et al. (1997) using the 18S rDNA sequence, by Koontz & Soltis (1999) using a combined data set consisting of 18S rDNA and rbcL and, recently, by Savolainen et al. (2000b) using a broad and dense sampling of rbcL sequences, again by Soltis et al. (2000) using less dense sampling but combining the three genes, 18S rDNA, rbcL and atpB, and again by Savolainen et al. (2000a) using a combined data set with atpB and rbcL (Table 1). No analyses

have contradicted a placement of *Roussea* in Asterales, although only a few (i.e. by Savolainen *et al.*, 1997, and Soltis *et al.*, 2000) have received high support values for the Asterales clade.

The position of Roussea within Asterales thus needed to be determined with precision, especially as the position of Roussea in the cladograms of Koontz & Soltis (1999), Savolainen et al. (2000a,b), and Soltis et al. (2000) indicated a basal position in Asterales and thus a key rôle for Roussea in the understanding of the evolution and biogeography of Asterales as a whole. Using the nucleotide sequences of two chloroplast genes, rbcL and ndhF, in a phylogenetic analysis, I wanted to obtain a reliable position for Roussea. If the sister group of Roussea is known with certainty, it will be possible to discuss its relationship to this group from a morphological viewpoint. Furthermore, as a member of a predominantly Australasian Asterales (Bremer & Gustafsson, 1997), Roussea has a peculiar distribution, as it is restricted to Mauritius. This disjunct distribution is also in need of attention. The focus of this paper will be on the phylogenetic relationship of Roussea and the morphological characterization of this relationship, while the biogeography and position of Roussea and its sister group in relation to the rest of Asterales will be treated in future papers.

MATERIAL AND METHODS

MOLECULAR DATA

Three new sequences were generated as part of this study. These were the *ndhF* gene for *Roussea simplex*,

Cuttsia viburnea F. Muell. and Escallonia rubra (Ruiz & Pav.) Pers. Roussea was sequenced from DNA provided by Soltis & Soltis (1997), while C. viburnea and E. rubra were sequenced from DNA extracted from herbarium material, according to the methods of Saghai-Maroof et al. (1984), as modified by Doyle & Doyle (1987). Voucher specimen data are presented in Table 2. The DNAs were purified with Quiaquick PCR kit (Qiagen) according to the instructions provided by the manufacturer. The primers for the PCR amplifications are described by Oxelman, Backlund & Bremer (1999). The product was purified with the Quiaquick PCR kit (Qiagen) according to the instructions from the manufacturer (using ddH2O as eluating agent). Cycle-sequencing was with AmpliTaq DNA Polymerase, FS (Perkin Elmer) using the manufacturer's protocol and a GeneAmp PCR System 9600 (Perkin Elmer). Sequence data was collected using an ABI 377 Sequencer (Perkin Elmer).

The sequences were aligned by eye together with 48 previously published ndhF and rbcL sequences obtained from GenBank/EMBL (Table 2). For a few genera (i.e. Dampiera R. Br. and Cyphia Bergius), there are no single species sequenced for both rbcL and ndhF. As it can be assumed that the genera included in the analysis represent monophyletic clades, at least at this level of resolution, the sequences from different species of the same genus for the two genes were pooled into one taxon for the matrix. The resulting rbcL-ndhF matrix represents 25 taxa, of which 20 (including Roussea) are usually considered to belong to the Asterales s.l.

After the alignment, indels were removed if they were shared by two or more taxa, and the presence or absence of the gaps were coded in a binary matrix. Out of 20 gaps, only four were informative. The aligned matrix, including the gap matrix, consisted of 3625 characters, of which 760 were parsimony-informative. Viburnum L. (Dipsacales: Adoxaceae), Lonicera L. (Dipsacales: Caprifoliaceae), Escallonia Mutis ex L.f. (Escalloniaceae), Quintinia A. DC. (Escalloniaceae), and Hedera L. (Apiales: Araliaceae) were used as outgroup.

CLADISTIC ANALYSIS

The matrix was analysed using PAUP* 4.0b4a (Swofford, 2000), using a heuristic search with 100 random addition sequences replicates and the TBR branch swapping algorithm. The internal supports for the clades were tested by a Bremer support analysis (Bremer, 1988) and a Jackknife analysis (Farris *et al.*, 1996) using PAUP (with a proportion of 36.8% of the characters deleted and 10000 replicates, using the heuristic search option, random addition sequence and TBR branch swapping).

MORPHOLOGICAL DATA

Leaf anatomy slides were prepared from R. simplex (J. Bosser 22.430 in P). A part of a leaf was rehydrated in boiling water with a trace of detergent, and then dehydrated in an alcohol series (from ethanol to butanol) and embedded in paraffin. Transverse sections c. 20 μ m thick were cut with a microtome and fixed on slides. After drying, the paraffin was removed and the sections were stained with safranin and Light Green. In a similar way, seeds from R. simplex (M. J. E. Coode 4120 in K) were sectioned transversely.

Cleared leaf parts were prepared from R. simplex (M. J. E. Coode 4120 in K). A part of a leaf (8 × 12 mm, including margin and apex) was rehydrated as described above, placed in sodium hydroxide solution (5%) for a few days at room temperature, thoroughly washed in distilled water, and mounted in Hoyer's solution on a microscope slide. Seeds from R. simplex (M. J. E. Coode 4120 in K) and C. viburnea (R. D. Hoogland & H. C. Hayes 8609 in K) were dissected and mounted in Hoyer's solution on microscope slides.

The following specimens of *R. simplex* were studied for morphological features (by dissecting microscope or by naked eye; herbarium abbreviations according to Holmgren, Holmgren & Barnett, 1990): C. Barday 2853 (K), Bernardi 14713 (K), M. Boivin s.n. (P), J. Bosser 22.430 (P), M. J. E. Coode 4120 (K), D. Lorence 2149 (P), and D. D'Urville s.n. (P).

RESULTS

The PAUP search gave two most parsimonious trees each with a length of 3041 steps, a consistency index of 0.61 and a retention index of 0.51. The two trees differ only in the topology of the outgroup, while the ingroup topology is identical and totally resolved. The strict consensus tree with Bremer support values and Jackknife values is shown in Figure 2.

Several well-supported clades (Fig. 2) are found, many with a Jackknife value of 100%. One of these well-supported clades consists of *Roussea* and the Carpodetaceae (sensu Gustafsson & Bremer, 1997); the support is 97%. The position of this clade as sister to the rest of the Asterales is unsupported (receiving a Jackknife value of less than 50%). Basal to the Roussea—Carpodetaceae clade is Roussea as sister to a highly supported (100%) clade with Carpodetus J. R. Forst. & G. Forst., Cuttsia F. Muell., and Abrophyllum Hook.f. (i.e. Carpodetaceae). Within the Carpodetaceae subclade, Cuttsia and Abrophyllum shows a sister group relationship with 100% support.

DISCUSSION

In 1997, Gustafsson and Bremer published an analysis of relationships of Carpodetaceae using *rbcL* only. They

Table 2. The species used in the *rbcL-ndhF* data matrix, listed according to family (APG, 1998). Accession numbers and references to previously published sequences extracted from the European Molecular Biology Laboratory (EMBL) and GenBank archives are given. Voucher information is given for the three species sequenced for this study, in addition to the accession numbers. The herbarium abbreviations are according to Holmgren *et al.* (1990). (1) Listed in GenBank/EMBL as *C. ramosa*, but this seems to be a non-existent name, and it is assumed that the correct name should be *C. ramosissima* (Hooker & Jackson, 1895; O. Demker, pers. comm.; Kårehed *et al.*, 1999).

Family/species	rbcL	ndhF	
Adoxaceae			
Viburnum rhytidophyllum Hemsl.	X87398 (Gustafsson, Backlund & Bremer, 1996)	AF027273 (Oxelman et al., 1999)	
Alseuosmiaceae			
Alseuosmia macrophylla A. Cunn.	X87377 (Gustafsson et al., 1996)	AJ238334 (Kårehed <i>et al.</i> , 1999)	
Crispiloba disperma (S. Moore) Steenis	X87382 (Gustafsson et al., 1996)	AJ238338 (Kårehed <i>et al.</i> , 1999)	
Araliaceae			
Hedera helix L.	L01924 (Olmstead <i>et al.</i> , 1992; Albert, Williams & Chase, 1992)	AF130203 (Kim, Jansen & Olmstead, unpublished)	
Argophyllaceae			
Argophyllum sp.	X87379 (Gustafsson <i>et al.</i> , 1996)	AJ238335 (Kårehed <i>et al.</i> , 1999)	
Corokia cotoneaster Raoul	L11221 (Xiang et al., 1993)	AJ238337 (Kårehed <i>et al.</i> , 1999)	
Asteraceae			
Barnadesia caryophylla (Veill.) S. F. Blake	L13859 (Michaels et al., 1993)	L39394 (Kim & Jansen, 1995)	
Calyceraceae			
Boopis anthemoides Juss.	L13860 (Michaels et al., 1993)	L39384 (Kim & Jansen, 1995)	
Campanulaceae			
Campanula ramosissima Sibth. & Sm. (1)	L13861 (Michaels et al., 1993)	L39387 (Kim & Jansen, 1995)	
Cyphia elata Harv.	L18796 (Cosner, Jansen & Lammers, 1994)	_	
Cyphia rogersii S. Moore	_	AJ238339 (Kårehed <i>et al.</i> , 1999)	
Lobelia cardinalis L.	-	AF130187 (Kim, Jansen & Olmstead, unpublished)	
Lobelia erinus L.	L13930 (Michaels et al., 1993)	=	
Caprifoliaceae	, ,		
Lonicera orientalis Lam. Carpodetaceae	X87389 (Gustafsson et al., 1996)	AF027274 (Oxelman et al., 1999)	
Abrophyllum ornans Hook.f.	X87375 (Gustafsson et al., 1996)	AJ238333 (Kårehed <i>et al.</i> , 1999)	
Carpodetus serratus J. R. Forst. & G. Forst.	Y08461 (Bremer & Gustafsson, 1997)	AJ238336 (Kårehed <i>et al.</i> , 1999)	
Cuttsia viburnea F. Muell.	Y08462 (Bremer & Gustafsson, 1997)	AJ277382; this study; Cejie & Williams s.n., UPS	
Donatiaceae			
Donatia fascicularis J. R. Forst. & G. Forst.	X87385 (Gustafsson et al., 1996)	AJ225074 (Laurent, Bremer & Bremer, 1999)	
Escalloniaceae			
Escallonia coquimbensis J. Rémy Escallonia rubra (Ruiz & Pav.)	L11183 (Morgan & Soltis, 1993) –	– AJ277383; this study; A. Backlund	
Pers.		s.n., UPS	
Quintinia verdonii F. Muell.	X87394 (Gustafsson et al., 1996)	AJ238344 (Kårehed <i>et al.</i> , 1999)	
Goodeniaceae			
Dampiera spicigera Benth.	X87383 (Gustafsson et al., 1996)	_	
Dampiera diversifolia de Vriese	_	L39386 (Kim & Jansen, 1995)	

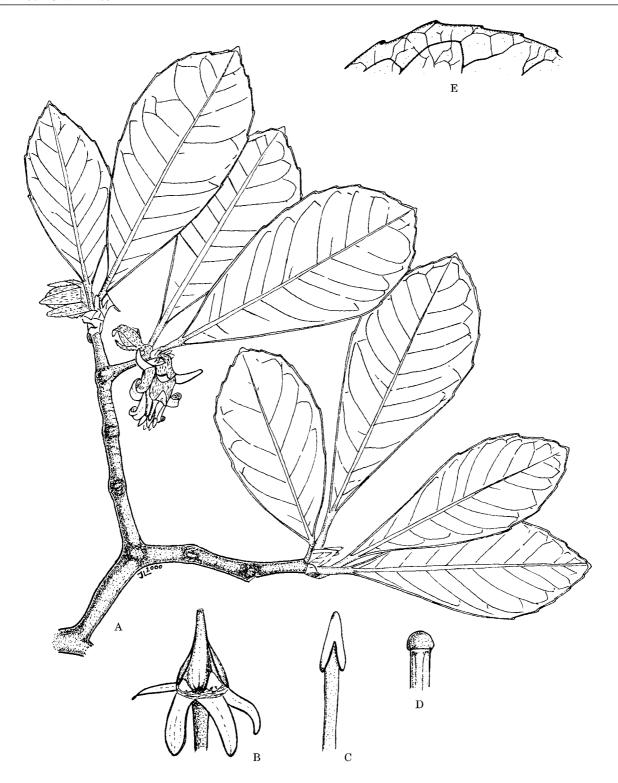
Table 2 – continued

Menyanthaceae		
Menyanthes trifoliata L.	L14006 (Olmstead et al., 1993)	L39388 (Kim & Jansen, 1995)
Pentaphragmataceae		
Pentaphragma ellipticum Poulsen	L18794 (Cosner et al., 1994)	AF130183 (Kim, Jansen &
		Olmstead, unpublished)
Phellinaceae		
Phelline comosa Labill.	X69748 (Savolainen et al., 1994)	AJ238342 (Kårehed <i>et al.</i> , 1999)
Rousseaceae		
Roussea simplex Sm.	AF084477 (Koontz & Soltis, 1999)	AJ277384; this study; Herbarium,
		Mauritius Sugar Industry Research
		Institute
Stylidiaceae		
Forstera bellidifolia Hook.f.	AJ225056 (Laurent et al., 1999)	AJ225082 (Laurent et al., 1999)
Stylidium graminifolium Sw.	L18790 (Cosner et al., 1994)	AJ225076 (Laurent et al., 1999)

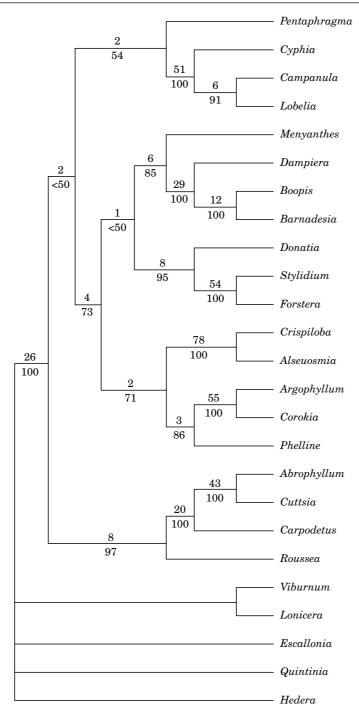
obtained high support values for a Carpodetus–Cuttsia–Abrophyllum clade and the Cuttsia–Abrophyllum sister relationship. However, they did not include Roussea, as that genus at the time was commonly assumed to be related to Brexia and Ixerba in the Celastrales. The result of the present investigation, based on both rbcL and ndhF, also strongly supports a monophyletic Carpodetaceae, but with the addition of the monotypic Roussea as the sister taxon to Carpodetaceae.

The morphology of Carpodetaceae was thoroughly discussed by Gustafsson & Bremer (1997), who recognized several characters supporting the monophyly of Carpodetaceae. Of the potential synapomorphies listed by Gustafsson & Bremer (1997), Roussea shares the thick petals with a valvate aestivation, as well as pentalocular fruits, while it differs in seed structure and trichome morphology.

The petals of *Roussea* are thick and hairy as in Carpodetaceae and thus similar in appearance but, in contrast to the latter, rather large and also shortly united with each other (e.g. Engler, 1928), and furthermore the indumentum is different (Al-Shammary & Gornall, 1994). The valvate aestivation is a synapomorphy for the Asterales as a whole (Gustafsson & Bremer, 1995; J. Lundberg & K. Bremer, in preparation), and thus cannot be taken as support for the *Roussea*—Carpodetaceae clade.


The fruits of *Roussea* are rather large pale green berries with four to five (up to seven) locules (Baillon, 1872; Engler, 1928; Scott, 1997), while the fruits of the Carpodetaceae are variable in shape, size and fleshiness (small, black berries in *Abrophyllum*, small, leathery berries in *Carpodetus*; and loculicidal capsules in *Cuttsia*; Baillon, 1872; Engler, 1928; van Royen, 1983; Gustafsson & Bremer, 1997; Takhtajan, 1997). However, in all genera the fruits are multilocular, a

state not commonly encountered elsewhere in Asterales. Outside the *Roussea*–Carpodetaceae clade they are found in some Campanulaceae, some Argophyllaceae and *Phelline*. These occurrences are most parsimoniously interpreted as parallelisms (J. Lundberg & K. Bremer, in preparation), and the presence in the *Roussea*–Carpodetaceae clade is thus a likely synapomorphy for this clade.


ONE FAMILY OR TWO?

The family Rousseaceae is monogeneric (and monospecific) with a single family, Carpodetaceae, as its sister group. As this sister group relationship is well supported, both by the molecular data set and by supposed morphological synapomorphies, a merging of these two families into one seems to be desirable (for a discussion on the topic, see Backlund & Bremer, 1998). The two clades also merit formal recognition in order to highlight the differences in morphology and distribution. The subfamily rank seems best fitted for this purpose, as this will give the clades a formal rank without giving too much emphasis to them. Although this will create a monotypic and thus redundant subfamily, Rousseoideae, the alternative not to recognize the two clades will only obscure the close relationships between Abrophyllum, Carpodetus and Cuttsia.

The family name Rousseaceae, validly published in 1839 (de Candolle, 1839), has priority over Carpodetaceae, validly published in 1841 (Fenzl, 1841). Thus, the merged family should be named Rousseaceae. In this new circumscription it contains four genera and six species. For the formal classification of Rousseaceae s.l., refer to Appendix 1, and for a description of subfamily Rousseoideae, see Appendix 2. Subfamily Carpodetoideae (as 'family Carpodetaceae')

Figure 1. Roussea simplex. A, habit, branch with flower and flower buds. B, fruit with attached calyx. C, stamen with anther. D, style with stigma. E, leaf margin. (Original drawing by J. Lundberg from herbarium material, C. Barday 2853, K.)

Figure 2. Strict consensus tree of the two equally parsimonious trees obtained by parsimony analysis of *rbcL* and *ndhF* sequences from the Asterales and five outgroups from related orders (*Viburnum* through *Hedera*).

have been described in a similar way by Gustafsson & Bremer (1997).

A NOTE ON THE DISTRIBUTION

Rousseaceae, in its new wider circumscription, has a wide and peculiar distribution. Carpodetoideae conform with the general Australasian distribution of Asterales (Bremer & Gustafsson, 1997), with Cuttsia and Abrophyllum restricted to eastern Australia (New South Wales and Queensland) and Carpodetus more widely distributed in New Zealand, New Guinea and the Solomon Islands. Rousseoideae with its single genus *Roussea*, in contrast, is confined to Mauritius, an island located some 7700 km west of the Australian east coast. Mauritius is a volcanic island, with an estimated subaerial age of about 8 Myr (Upton, 1982). A direct dispersal to Mauritius of the ancestor of Roussea from the Australasia must thus have been taken place not earlier than Pliocene. However, there are other possibilities, involving migrations and subsequent extinctions from areas where Rousseaceae today are absent. Madagascar is one possibility, India is another. As the biogeography of the Indian Ocean area still is insufficiently known, a further analysis of the biogeography of Rousseaceae must be postponed.

ACKNOWLEDGEMENTS

I should like to thank Kåre Bremer and two anonymous referees for many valuable comments that improved earlier drafts of this paper. I am also very grateful to Birgitta Bremer, who provided her knowledge and laboratory facilities for the molecular work, to Nahid Heidari and Jessica Rönnholm who have been most helpful with the sequencing, and to Ulla-Britt Sahlström for help with sectioning and preparation of microscopic slides. Extracted DNA was kindly provided by Douglas E. Soltis, who also shared an unpublished rbcL sequence of Roussea. I am also grateful to Ki-Joong Kim and Robert K. Jansen who let me use two unpublished sequences. I also thank Mats H. G. Gustafsson for sharing information and literature on Carpodetaceae and Asterales. The curators at K, P and UPS are also to be thanked, as are the librarians at the Uppsala University Library. This study was financed by a Swedish Natural Science Research Council grant to Kåre Bremer.

REFERENCES

Agababian VS. 1964. Evolution of pollen in the orders Cunoniales and Saxifragales in relation to some questions of their systematics and phylogeny. *Izvestic Akademii Nauk Armyanskoi SSR* **17:** 59–75 [original in Russian].

Al-Shammary KIA, Gornall RJ. 1994. Trichome anatomy

- of the Saxifragaceae s.l. from the southern hemisphere. Botanical Journal of the Linnean Society 114: 99–131.
- Albert VA, Williams SE, Chase MW. 1992. Carnivorous plants: Phylogeny and structural evolution. Science 257: 1491–1495.
- Angiosperm Phylogeny Group (APG). 1998. An ordinal classification for the families of flowering plants. *Annals of the Missouri Botanical Garden* 85: 531–553.
- Backlund A, Bremer K. 1998. To be or not to be principles of classification and monotypic plant families. *Taxon* 47: 391–400.
- Baillon H. 1872. Histoire des Plantes, vol. 3. Paris.
- Bensel CR, Palser BF. 1975. Floral anatomy in the Saxi-fragaceae sensu lato. IV. Baueroideae and conclusions. *American Journal of Botany* 62: 688–694.
- Bentham G, Hooker JD. 1862–1867. Genera Plantarum, vol. 1. London.
- Bremer K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. *Evolution* 42: 795–803.
- Bremer K, Gustafsson MHG. 1997. East Gondwana ancestry of the sunflower alliance of families. *Proceedings of the National Academy of Sciences, USA* 94: 9188–9190.
- Candolle A de. 1830. Monographie des Campanulées. Paris.
 Candolle AP de. 1839. Prodromus Systematis Naturalis Regni Vegetabilis, vol. 7(2). Paris.
- Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qui Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528–580.
- Cosner ME, Jansen RK, Lammers TG. 1994. Phylogenetic relationships in the Campanulaceae based on *rbcL* sequences. *Plant Systematics and Evolution* 190: 79–95.
- Cronquist A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.
- **Doyle JJ, Doyle JL. 1987.** A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* **19:** 11–15.
- Eichler AW. 1878. Blüthendiagramme, vol. 2. Leipzig.
- Engler A. 1928. Saxifragaceae. In: Engler A, ed. Die natürlichen Pflanzenfamilien, 2nd edn, vol. 18a. Leipzig, 74–226.
- Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG. 1996. Parsimony jackknifing outperforms neighborjoining. *Cladistics* 12: 99–124.
- Fenzl E. 1841. Carpodetus Forster. Denkschriften der Königlich-Baierischen Botanischen Gesellschaft in Regensburg 3: 155–173.
- Gustafsson MHG, Backlund A, Bremer B. 1996. Phylogeny of the Asterales sensu lato based on *rbcL* sequences

- with particular reference to the Goodeniaceae. *Plant Systematics and Evolution* **199:** 217–242.
- Gustafsson MHG, Bremer K. 1995. Morphological and phylogenetic relationships of the Asteraceae, Calyceraceae, Campanulaceae, Goodeniaceae, and related families (Asterales). American Journal of Botany 82: 250–265.
- Gustafsson MHG, Bremer K. 1997. The circumscription and systematic position of Carpodetaceae. Australian Systematic Botany 10: 855–862.
- Hegnauer R. 1973. Chemotaxonomie der Pflanzen, vol. 6. Basel: Birkhäuser Verlag.
- Hideaux MJ, Ferguson IK. 1976. The stereostructure of the exine and its evolutionary significance in Saxifragaceae sensu lato. In: Ferguson IK, Muller J, eds. *The evolutionary* significance of the exine. London: Academic Press, 327–377.
- Holmgren PK, Holmgren NH, Barnett LC, eds. 1990.
 Index Herbariorum. Part 1: The Herbaria of the World, 8th
 edn. Regnum Vegetabile 120. New York: IAPT.
- Hooker JD, Jackson BD. 1895. Index Kewensis, vol. 1. Oxford.
- Horaninow P. 1847. Characteres essentiales familiarum ac tribuum regni vegetabilis et amphorganici. Petropoli.
- Hutchinson J. 1967. The genera of flowering plants. Dicotyledons, vol. 2. Oxford: Clarendon Press.
- Kårehed J, Lundberg J, Bremer B, Bremer K. 1999. Evolution of the Australasian families Alseuosmiaceae, Argophyllaceae, and Phellinaceae. Systematic Botany 24: 660–682.
- Kim K-J, Jansen RK. 1995. ndhF sequence evolution and the major clades in the sunflower family. Proceedings of the National Academy of Sciences, USA 92: 10379–10383.
- Koontz JA, Soltis DE. 1999. DNA sequence data reveal polyphyly of Brexioideae (Brexiaceae; Saxifragaceae sensu lato). Plant Systematics and Evolution 219: 199–208.
- **Laurent N, Bremer B, Bremer K. 1999.** Phylogeny and generic interrelationships of the Stylidiaceae (Asterales), with a possible extreme case of floral paedomorphosis. *Systematic Botany* **23:** 289–304.
- Lindley J. 1830. An introduction to the natural system of botany. London.
- Lindley J. 1853. The vegetable kingdom, 3rd edn. London.
 Michaels HJ, Scott KM, Olmstead RG, Szaro T, Jansen RK, Palmer JD. 1993. Interfamilial relationships of the Asteraceae: Insights from rbcL sequence variation. Annals of the Missouri Botanical Garden 80: 742–751.
- Morgan DR, Soltis DE. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on *rbcL* sequence data. *Annals of the Missouri Botanical Garden* 80: 631–660.
- Olmstead RG, Michaels HJ, Scott KM, Palmer JD. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of *rbcL*. Annals of the Missouri Botanical Garden 79: 249–265.
- Olmstead RG, Bremer B, Scott KM, Palmer JD. 1993. A parsimony analysis of the Asteridae sensu lato based on *rbcL* sequences. *Annals of the Missouri Botanical Garden* 80: 700–722.
- Oxelman B, Backlund M, Bremer B. 1999. Relationships

- of the Buddlejaceae s.l. investigated using parsimony jack-knife and branch support analysis of chloroplast *ndhF* and *rbcL* sequence data. *Systematic Botany* **24:** 164–182.
- Ramamonjiarisoa BA. 1980. Comparative anatomy and systematics of African and Malagasy woody Saxifragaceae sensu lato. Unpublished D. Phil. Thesis, University of Massachusetts.
- van Royen P. 1983. The Alpine Flora of New Guinea, vol. 4. Vaduz: Cramer.
- Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. *Proceedings of the National Academy of Sciences, USA* 81: 8014–8018.
- Savolainen V, Spichiger R, Manen J-F. 1997. Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. *Molecular Phylogenetics and Evolution* 7: 145–157.
- Savolainen V, Manen J-F, Douzery E, Spichiger R. 1994. Molecular phylogeny of families related to Celastrales based on *rbcL* 5′ flanking sequences. *Molecular Phylogenetics and Evolution* 3: 27–37.
- Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu Y-L. 2000a. Phylogenetics of flowering plants based on combined analysis of plastid *atpB* and *rbcL* gene sequences. *Systematic Biology* **49**: 306–362.
- Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud J-C, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW. 2000b. Phylogeny of the eudicots: a nearly complete familial analysis based on *rbcL* gene sequences. *Kew Bulletin* 55: 257–309.
- Schulze-Menz GK. 1964. Rosales. In: Melchior H, ed. A. Engler's Syllabus der Pflanzenfamilien, vol. 2, 12th edn. Berlin: Gebrüder Borntraeger, 193–242.
- Scott AJ. 1997. 85. Brexiacées. In: Bosser J, Cadet T, Guého J, Marais W, eds. Flore des Mascareignes La Réunion, Maurice, Rodrigues. La Chapell Montligeon: Imprimerie de Montligeon.
- **Simmons MP, Hedin JP. 1999.** Relationships and morphological character change among genera of Celastraceae sensu lato (including Hippocrateaceae). *Annals of the Missouri Botanical Garden* **86:** 723–757.
- Smith JE. 1789. Plantarum icones hactenus ineditae. London.
- Soltis DE, Soltis PS. 1997. Phylogenetic relationships in Saxifragaceae sensu lato: A comparision of topologies based on 18S rDNA and *rbcL* sequences. *American Journal of Botany* 84: 504–522.
- Soltis DE, Soltis PS, Clegg MT, Durbin M. 1990. rbcL sequence divergence and phylogenetic relationships in Saxifragaceae sensu lato. Proceedings of the National Academy of Sciences, USA 87: 4640–4644.
- Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw S-M, Gillespie

- LJ, Kress WJ, Sytsma KJ. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. *Annals of the Missouri Botanical Garden* 84: 1–49.
- Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381–461.
- Stern WL, Brizicky GK, Eyde RH. 1969. Comparative anatomy and relationships of Columelliaceae. *Journal of the Arnold Arboretum* 50: 36–75.
- Swamy BGL. 1954. Morpho-taxonomical notes on the Escallonioideae, Part A. Nodal and petiolar vasculature. Journal of the Madras University 24: 299–306.
- Swofford DL. 2000. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0. Sunderland, Massachusetts, USA: Sinauer Associates. (Computer package)
- Takhtajan A. 1966. Systema et Phylogenia Magnoliophytorum. Moskva: Inst. Bot. Nom. V. Kamarovii Akad. Scient URSS
- **Takhtajan A. 1987.** Systema Magnoliophytorum. Leningrad: Officina Editoria 'NAUK'.
- Takhtajan A. 1997. Diversity and Classification of Flowering Plants. New York: Columbia University Press.
- **Thorne R. 1992.** Classification and geography of the flowering plants. *The Botanical Review* **58:** 225–348.
- **Thouvien M. 1890.** Recherches sur la structure des Saxifragacées. *Annales des Sciences Naturelles* **7:** 1–174 + 21 Plates.
- Tobe H, Raven PH. 1993. Embryology of Acanthothamnus, Brexia and Canotia (Celastrales): a comparison. Botanical Journal of the Linnean Society 112: 17–32.
- Upton BGJ. 1982. Oceanic Islands. In: Nairn AEM, Stehli FG, eds. The Ocean Basins and Margins. Volume 6, The Indian Ocean. New York: Plenum Press, 585–648.
- Verdcourt B. 1968. Brexiaceae. In: Milne-Redhead E, Polhill RM, eds. Flora of Tropical East Africa. London: Whitefriars Press.
- Watari S. 1939. Anatomical studies of the leaves of some Saxifragaceous plants, with special reference to the vascular system. *Journal of the Faculty of Science. Imperial University of Tokyo. Section III Botany* 5: 195–316.
- Xiang Q-Y, Soltis DE, Morgan DR, Soltis PS. 1993. Phylogenetic relationships of *Cornus* L. sensu lato and putative relatives inferred from *rbcL* sequence data. *Annals of the Missouri Botanical Garden* 80: 723–734.

APPENDIX 1

CLASSIFICATION OF ROUSSEACEAE S.L.

Rousseaceae A. P. de Candolle (1839: 521, as 'Ordo CVIII. Roussæaceæ')

Carpodetoideae (Fenzl) J. Lundberg, stat. nov. Basionym: Carpodetaceae Fenzl, Denkschr. Königl.-Baier. Bot. Ges. Regensburg 3(1841): 155. Type: *Carpodetus J. R. Forst. & G. Forst.*

Abrophyllum Hook.f. Carpodetus J. R. Forst. & G. Forst. Cuttsia F. Muell. Rousseoideae Horaninow (1847) Roussea Sm.

APPENDIX 2

ROUSSEOIDEAE, A BRIEF DESCRIPTION

The following description is based on original observations and on data from Agababian (1964), Al-Shammary & Gornall (1994), Hideaux & Ferguson (1976), Ramamonjiarisoa (1980), Scott (1997), Stern, Brizicky & Eyde (1969), Swamy (1954) and Watari (1939).

Climbing shrub, sometimes strangler, up to 4 m in height. Trichomes of two types: glandular, peltate hairs with multicellular heads, and eglandular, uniseriate (up to four cells tall) or unicellular, borne either solitary or in clusters. Vessels with very oblique end walls and scalariform perforation plates with an average of 20 (up to 49) bars; lateral pitting scalariform or occasionally transitional; spiral thickenings absent. Imperforate tracheary elements (tracheids and fibre-tracheids) with bordered pits and without septa. Wood-rays tri- to multiseriate, heterogenous. Axial parenchyma scanty paratracheal. Nodes trilacunar. Leaves opposite and sometimes in pseudo-whorls, simple, petiolate, and estipulate with serrate-glandular margins and semicraspedodromous venation; petiole and lamina with radially elongated, schizogynous resin canals. Leaf epidermal and hypodermal cells often filled with an unknown, smooth substance (staining with safranin). Stomata anomocytic. Flowers solitary or few, borne in the leaf axis. Calvx parts 4-5, united at the base; calvx lobes rather large, light green, thick, as young with eglandular hairs on both sides but later more or less glabrous, valvate in bud, persistent. Corolla parts 4-5, united at the base; petals rather large, yellow to orange, thick, with eglandular hairs outside, valvate in bud, persistent. Stamens isomerous and alternating with petals, inserted within the lobes of the nectary disc. Anthers large, oblong-sagittate, tetrasporangiate and dithecal, extrorse, opening by longitudinal slits, basifixed. Pollen grains isopolar, polyporate, with smooth and complete tectum, dispersed in monads; collumella reduced, not branched. Style glabrous, thick, unbranched, persistent. Stigma capitate, 4-5-lobed, revolute at margins. Ovary superior, pyramidal, 4-5angular and gradually tapering into the style, 4-5(-7)locular with many, distinctly two-ranked ovules on thick, axile placentas. Fruit an angular, 4–5(–7)-locular, fleshy berry with a dilated base. Seeds numerous, flattened, ovoid, exotestal. Testa with elongated epidermis cells with a strongly undulating outline and thickened and lignified cell walls. Endosperm copious, embryo straight, minute. Tannins absent.